Clustering quantum Markov chains on trees associated with open quantum random walks

Author:

Accardi Luigi1,Andolsi Amenallah2,Mukhamedov Farrukh3,Rhaima Mohamed4,Souissi Abdessatar5

Affiliation:

1. Centro Vito Volterra, Università di Roma "Tor Vergata", Roma I-00133, Italy

2. Nuclear Physics and High Energy Physics Research Unit, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia

3. Department of Mathematical Sciences, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates

4. Department of Statistics and Operations Research, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

5. Mathematical Physics, Quantum Modeling and Mechanical Design, University of Carthage, Carthage 1054, Tunisia

Abstract

<abstract><p>In networks, the Markov clustering (MCL) algorithm is one of the most efficient approaches in detecting clustered structures. The MCL algorithm takes as input a stochastic matrix, which depends on the adjacency matrix of the graph network under consideration. Quantum clustering algorithms are proven to be superefficient over the classical ones. Motivated by the idea of a potential clustering algorithm based on quantum Markov chains, we prove a clustering property for quantum Markov chains (QMCs) on Cayley trees associated with open quantum random walks (OQRW).</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3