Unification of Adomian decomposition method and ZZ transformation for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems

Author:

Jawarneh Yousef1,Yasmin Humaira2,Ganie Abdul Hamid3,Mossa Al-Sawalha M.1,Ali Amjid45

Affiliation:

1. Department of Mathematics, College of Science, University of Ha'il, Ha'il 2440, Saudi Arabia

2. Department of Basic Sciences, General Administration of the Preparatory Year, King Faisal University, 31982, Al-Ahsa, Saudi Arabia

3. Basic Science Department, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia

4. Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan

5. Department of Information Science, Faculty of Science and Engineering, Saga University, Japan

Abstract

<abstract><p>This paper presents a novel approach for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems by using the unification of the Adomian decomposition method and ZZ transformation. The suggested method combines the Aboodh transform and the Adomian decomposition method, both of which are trustworthy and efficient mathematical tools for solving fractional differential equations (FDEs). This method's theoretical analysis is addressed for nonlinear FDE systems. To find exact solutions to the equations, the method is applied to fractional Kersten-Krasil'shchik linked KdV-mKdV systems. The results show that the suggested method is efficient and practical for solving fractional Kersten-Krasil'shchik linked KdV-mKdV systems and that it may be applied to other nonlinear FDEs. The suggested method has the potential to provide new insights into the behavior of nonlinear waves in fluid and plasma environments, as well as the development of new mathematical tools for modeling and studying complicated wave phenomena.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3