Fractional-time derivative in ISPH method to simulate bioconvection flow of a rotated star in a hexagonal porous cavity

Author:

Aly Abdelraheem M.,Hyder Abd-Allah

Abstract

<abstract> <p>A novel treatment of fractional-time derivative using the incompressible smoothed particle hydrodynamics (ISPH) method is introduced to simulate the bioconvection flow of nano-enhanced phase change materials (NEPCM) in a porous hexagonal cavity. The fractional-time derivative is based on the Caputo style, which reflects the fractional order behavior in complex systems. In this work, the circular rotation of the embedded four-pointed star and the motion of oxytactic microorganisms in a hexagonal cavity are conducted. Due to the significance of fractional derivatives in handling real physical problems with more flexibility than conventional derivatives, the present scheme of the ISPH method is developed to solve the fractional-time derivative of the bioconvection flow in a porous hexagonal cavity. This study implicates the variations of a fractional-time derivative, a parametric of an inner four-pointed star, and the pertinent physical parameters on the behavior of a bioconvection flow of a nanofluid in a hexagonal-cavity containing oxytactic microorganisms. The presence of microorganisms has a significant role in many biological, engineering, and medical phenomena. From the present numerical investigation, it is well mentioned that the computational time of the transient processes can be reduced by applying a fractional-time derivative. The variable sizes of an inner four-pointed star enhance the bioconvection flow in a hexagonal cavity.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3