MHD effects on Casson fluid flow squeezing between parallel plates

Author:

Al-Hanaya Amal1,Alotaibi Munirah1,Shqair Mohammed2,Hagag Ahmed Eissa3

Affiliation:

1. Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671 Saudi Arabia

2. Faculty of Science, Zarqa University, Zarqa 13110, Jordan

3. Department of Basic Science, Faculty of Engineering, Sinai University, Ismailia, Egypt

Abstract

<abstract> <p>We introduce this work by studying the non-Newtonian fluids, which have huge applications in different science fields. We decided to concentrate on taking the time-dependent Casson fluid, which is non-Newtonian, compressed between two flat plates. in fractional form and the magnetohydrodynamic and Darcian flow effects in consideration using the semi-analytical iterative method created by Temimi and Ansari, known as TAM, this method is carefully selected to be suitable for studying the Navier-Stokes model in the modified form to express the studied case mathematically. To simplify the partial differential equations of the system to the nonlinear ordinary differential equation of order four the similarity transformations suggested by Wang (1976) are used. The TAM approach demonstrates a high degree of accuracy, efficiency, and convergence when applied to the resolution of both linear and nonlinear problems, and the results in this article are used to study the effect of the related factors like squeeze number <italic>Sq</italic>, Casson parameter<italic>β</italic>, magnetohydrodynamic parameter <italic>Mg</italic> and permeability constant <italic>Mp</italic> and examining the skin friction coefficient effect. The velocity profile is studied numerically, which is tabulated and graphically represented to show and confirm the theoretical study. We can conclude that the success of the proposed method in studying time-dependent Casson fluid, which is non-Newtonian, compressed between two flat plates provides opportunities for additional study and advancements in fluid mechanics using the techniques.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3