Affiliation:
1. Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2. Department of Mathematics, Faculty of Science, University of Bisha, Bisha 61922, Saudi Arabia
Abstract
<abstract><p>Let $ R $ be a ring and $ U(R) $ be the set of unit elements of $ R $. The unit graph $ G(R) $ of $ R $ is the graph whose vertices are all the elements of $ R $, defining distinct vertices $ x $ and $ y $ to be adjacent if and only if $ x + y \in U(R) $. The Laplacian spectrum of $ G(\mathbb{Z}_n) $ was studied when $ n = p^{m} $, where $ p $ is a prime and $ m $ is a positive integer. Consequently, in this paper, we study the Laplacian spectrum of $ G(\mathbb{Z}_n) $, for $ n = p_1p_2...p_k $, where $ p_i $ are distinct primes and $ i = 1, 2, ..., k $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference18 articles.
1. S. Akbari, E. Estaji, M. R. Khorsandi, On the unit graph of a noncommutative ring, Algebra Colloq., 22 (2015), 817–822. https://doi.org/10.1142/S100538671500070X
2. N. Ashrafi, H. R. Maimani, M. R. Pournaki, S. Yassemi, Unit graphs associated with rings, Commun. Algebra, 38 (2010), 2851–2871. https://doi.org/10.1080/00927870903095574
3. S. Banerjee, Laplacian spectrum of comaximal graph of the ring $\mathbb{Z}_n$, Spec. Matrices, 10 (2022), 285–298. https://doi.org/10.1515/spma-2022-0163
4. D. K. Basnet, A. Sharma, R. Dutta, Nilpotent graph, Theory Appl. Graphs, 8 (2021), 2. https://doi.org/10.20429/tag.2021.080102
5. S. Chattopadhyay, K. L. Patra, B. K. Sahoo, Laplacian eigenvalues of the zero divisor graph of the ring $\mathbb{Z}_n$, Linear Algebra Appl., 584 (2020), 267–286. https://doi.org/10.1016/j.laa.2019.08.015