Super-resolution reconstruction algorithm for dim and blurred traffic sign images in complex environments

Author:

Ma Yan1,Kong Defeng2

Affiliation:

1. Wuhan Technical College of Communications, Wuhan, China

2. School of Mechanical Engineering, Hubei University of Technology, Wuhan, China

Abstract

<abstract> <p>In poor lighting and rainy and foggy bad weather environments, road traffic signs are blurred and have low recognition, etc. A super-resolution reconstruction algorithm for complex lighting and bad weather traffic sign images was proposed. First, a novel attention residual module was designed to incorporate an aggregated feature attention mechanism on the jump connection side of the base residual module so that the deep network can obtain richer detail information; second, a cross-layer jump connection feature fusion mechanism was adopted to enhance the flow of information across layers as well as to prevent the problem of gradient disappearance of the deep network to enhance the reconstruction of the edge detail information; and lastly, a positive-inverse dual-channel sub-pixel convolutional up-sampling method was designed to reconstruct super-resolution images to obtain better pixel and spatial information expression. The evaluation model was trained on the Chinese traffic sign dataset in a natural scene, and when the scaling factor is 4, the average values of PSNR and SSIM are improved by 0.031 when compared with the latest release of the deep learning-based super-resolution reconstruction algorithm for single-frame images, MICU (Multi-level Information Compensation and U-net), the average values of PSNR and SSIM are improved by 0.031 dB and 0.083, and the actual test average reaches 20.946 dB and 0.656. The experimental results show that the reconstructed image quality of this paper's algorithm is better than the mainstream algorithms of comparison in terms of objective indexes and subjective feelings. The super-resolution reconstructed image has a higher peak signal-to-noise ratio and perceptual similarity. It can provide certain technical support for the research of safe driving assistive devices in natural scenes under multi-temporal varying illumination conditions and bad weather.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3