Robust smoothing of left-censored time series data with a dynamic linear model to infer SARS-CoV-2 RNA concentrations in wastewater

Author:

Lewis-Borrell Luke1,Irving Jessica1,Lilley Chris J.1,Courbariaux Marie2,Nuel Gregory3,Danon Leon4,O'Reilly Kathleen M.5,Grimsley Jasmine M. S.1,Wade Matthew J.16,Siegert Stefan7

Affiliation:

1. UK Health Security Agency, Nobel House, Smith Square, London SW1P 3JR, UK

2. Obépine/SUMMIT, Sorbonne University, 75005 Paris, France

3. Stochastics and Biology Group, Probability and Statistics (LPSM, CNRS 8001), Sorbonne University, Campus Pierre et Marie Curie, 4 Place Jussieu, 75005, Paris, France

4. Department of Engineering Mathematics, University of Bristol, Ada Lovelace Building, University Walk, Bristol BS8 1TW, UK

5. Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK

6. School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK

7. Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QE, UK

Abstract

<abstract><p>Wastewater sampling for the detection and monitoring of SARS-CoV-2 has been developed and applied at an unprecedented pace, however uncertainty remains when interpreting the measured viral RNA signals and their spatiotemporal variation. The proliferation of measurements that are below a quantifiable threshold, usually during non-endemic periods, poses a further challenge to interpretation and time-series analysis of the data. Inspired by research in the use of a custom Kalman smoother model to estimate the true level of SARS-CoV-2 RNA concentrations in wastewater, we propose an alternative left-censored dynamic linear model. Cross-validation of both models alongside a simple moving average, using data from 286 sewage treatment works across England, allows for a comprehensive validation of the proposed approach. The presented dynamic linear model is more parsimonious, has a faster computational time and is represented by a more flexible modelling framework than the equivalent Kalman smoother. Furthermore we show how the use of wastewater data, transformed by such models, correlates more closely with regional case rate positivity as published by the Office for National Statistics (ONS) Coronavirus (COVID-19) Infection Survey. The modelled output is more robust and is therefore capable of better complementing traditional surveillance than untransformed data or a simple moving average, providing additional confidence and utility for public health decision making.</p> <p>La détection et la surveillance du SARS-CoV-2 dans les eaux usées ont été développées et réalisées à un rythme sans précédent, mais l'interprétation des mesures de concentrations en ARN viral, et de leurs variations spatio-temporelles, pose question. En particulier, l'importante proportion de mesures en deçà du seuil de quantification, généralement pendant les périodes non endémiques, constitue un défi pour l'analyse de ces séries temporelles. Inspirés par un travail de recherche ayant produit un lisseur de Kalman adapté pour estimer les concentrations réelles en ARN de SARS-CoV-2 dans les eaux usées à partir de ce type de données, nous proposons un nouveau modèle linéaire dynamique avec censure à gauche. Une validation croisée de ces lisseurs, ainsi que d'un simple lissage par moyenne glissante, sur des données provenant de 286 stations d'épuration couvrant l'Angleterre, valide de façon complète l'approche proposée. Le modèle présenté est plus parcimonieux, offre un cadre de modélisation plus flexible et nécessite un temps de calcul réduit par rapport au Lisseur de Kalman équivalent. Les données issues des eaux usées ainsi lissées sont en outre plus fortement corrélées avec le taux d'incidence régional produit par le bureau des statistiques nationales (ONS) Coronavirus Infection Survey. Elles se montrent plus robustes que les données brutes, ou lissées par simple moyenne glissante, et donc plus à même de compléter la surveillance traditionnelle, renforçant ainsi la confiance en l'épidémiologie fondée sur les eaux usées et son utilité pour la prise de décisions de santé publique.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference26 articles.

1. F. Balloux, Mass COVID testing and sequencing is unsustainable – here's how future surveillance can be done, The Conversation, 2022. Available from: https://theconversation.com/mass-covid-testing-and-sequencing-is-unsustainable-heres-how-future-surveillance-can-be-done-177404.

2. M. J. Wade, D. Jones, A. Singer, A. Hart, A. Corbishley, C. Spence, et al., Wastewater COVID-19 monitoring in the UK: summary for SAGE, 2020. Available from: https://www.gov.uk/government/publications/defrajbc-wastewater-covid-19-monitoring-in-the-uk-summary-19-november-2020.

3. A. Bivins, D. North, A. Ahmad, W. Ahmed, E. Alm, F. Been, et al., Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight Against COVID-19, Environ. Sci. Technol., 54 (2020), 7754–7757. https://doi.org/10.1021/acs.est.0c02388

4. UC Merced Researchers, COVIDPoops19: Summary of Global SARS-CoV-2 Wastewater Monitoring Efforts, 2022. Available from: https://www.arcgis.com/apps/dashboards/c778145ea5bb4daeb58d31afee389082.

5. H. R. Safford, K. Shapiro, H. N. Bischel, Wastewater analysis can be a powerful public health tool - if it's done sensibly, Proc. Natl. Acad. Sci., 119 (2022), e2119600119. https://doi.org/10.1073/pnas.2119600119

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3