The even vertex magic total labelings of $ t $-fold wheels

Author:

Saduakdee Supaporn1,Khemmani Varanoot2

Affiliation:

1. Program of Mathematics, Chandrakasem Rajabhat University, Ratchadaphisek Road, Bangkok 10900, Thailand

2. Department of Mathematics, Srinakharinwirot University, Sukhumvit 23, Bangkok 10110, Thailand

Abstract

<abstract><p>Let $ G $ be a graph of order $ n $ and size $ m $. A vertex magic total labeling of $ G $ is a one-to-one function $ f $: $ V(G) \cup E(G) \rightarrow \{1, 2, \cdots, n+m\} $ with the property that for each vertex $ u $ of $ G $, the sum of the label of $ u $ and the labels of all edges incident to $ u $ is the same constant, referred to as the magic constant. Such a labeling is even if $ f[V(G)] = \{2, 4, 6, \cdots, 2n\} $. A graph $ G $ is called an even vertex magic if there is an even vertex magic total labeling of $ G $. The primary goal of this paper is to study wheel related graphs with the size greater than the order, which have an even vertex magic total labeling. For every integer $ n \geq 3 $ and $ t \geq 1 $, the $ t $-fold wheel $ W_{n, t} $ is a wheel related graph derived from a wheel $ W_n $ by duplicating the $ t $ hubs, each adjacent to all rim vertices, and not adjacent to each other. The $ t $-fold wheel $ W_{n, t} $ has a size $ nt + n $ that exceeds its order $ n + t $. In this paper, we determine the magic constant of the $ t $-fold wheel $ W_{n, t} $, the bound of an integer $ t $ for the even vertex magic total labeling of the $ t $-fold wheel $ W_{n, t} $ and the conditions for even vertex magic $ W_{n, t} $, focusing on integers $ n $ and $ t $ are established. Additionally, we investigate the necessary conditions for the even vertex magic total labeling of the $ n $-fold wheel $ W_{n, n} $ when $ n $ is odd and the $ n $-fold wheel $ W_{n, n-2} $ when $ n $ is even. Furthermore, our study explores the characterization of an even vertex magic $ W_{n, t} $ for integer $ 3 \leq n \leq 9 $.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference12 articles.

1. A. Alhevaz, M. Darkooti, H. Rahbani, Y. Shang, Strong equality of perfect Roman and weak Roman domination in trees, Mathematics, 7 (2019), 997. http://doi.org/10.3390/math7100997

2. A. Alhevaz, M. Baghipur, H. A. Ganie, Y. Shang, The generalized distance spectrum of the join of graphs, Symmetry, 12 (2020), 169. http://doi.org/10.3390/sym12010169

3. J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 2009.

4. J. A. MacDougall, M. Miller, K. A. Sugeng, Super vertex-magic total labeling of graphs, Proceedings of the 15th Australasian Workshop on Combinatorial Algorithms, 2004.

5. J. A. MacDougall, M. Miller, Slamin, W. D. Wallis, Vertex-magic total labeling of graphs, Utilitas Math., 61 (2002), 3–21.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3