Author:
Yang Yanqi, ,Tao Shuangping,Lu Guanghui
Abstract
<abstract><p>In this paper, by applying the accurate estimates of the Hörmander class, the authors consider the commutators of bilinear pseudo-differential operators and the operation of multiplication by a Lipschitz function. By establishing the pointwise estimates of the corresponding sharp maximal function, the boundedness of the commutators is obtained respectively on the products of weighted Lebesgue spaces and variable exponent Lebesgue spaces with $ \sigma \in\mathcal{B}BS_{1, 1}^{1} $. Moreover, the endpoint estimate of the commutators is also established on $ L^{\infty}\times L^{\infty} $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference43 articles.
1. E. Acerbi, G. Mingione, Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213–259. http://dx.doi.org/10.1007/s00205-002-0208-7
2. E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. http://dx.doi.org/10.1215/S0012-7094-07-13623-8
3. J. Alvarez, C. Pérez, Estimates with $A_{\infty}$ weights for various singular integral operators, Boll. Unione Mat. Ital., 8 (1994), 123–133.
4. P. Auscher, M. Taylor, Paradifferential operators and commutator estimates, Commun. Part. Diff. Eq., 20 (1995), 1743–1775. http://dx.doi.org/10.1080/03605309508821150
5. Á. Bényi, V. Naibo, Commutators of bilinear pseudodifferential operators and Lipschitz functions, J. Fourier Anal. Appl., 24 (2018), 759–779. http://dx.doi.org/10.1007/s00041-016-9519-1