Comparative analysis of feed-forward neural network and second-order polynomial regression in textile wastewater treatment efficiency

Author:

Alkorbi Ali S.1,Tanveer Muhammad2,Shahid Humayoun2,Qadir Muhammad Bilal3,Ahmad Fayyaz2,Khaliq Zubair4,Jalalah Mohammed56,Irfan Muhammad5,Algadi Hassan56,Harraz Farid A.16

Affiliation:

1. Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia

2. Department of Applied Sciences, National Textile University, Faisalabad, 37610, Pakistan

3. Department of Textile Engineering, National Textile University, Faisalabad, 37610, Pakistan

4. Department of Materials, National Textile University, Faisalabad, 37610, Pakistan

5. Department of Electrical Engineering, College of Engineering, Najran University, Najran 11001, Saudi Arabia

6. Advanced Materials and Nano-Research Centre (AMNRC), Najran University, Najran 11001, Saudi Arabia

Abstract

<abstract><p>This study refines a single-layer Feed-Forward Neural Network (FFNN) for the treatment of textile dye wastewater, concentrating on percentage decolorization (%DEC) and percentage chemical oxygen demand (%COD) reduction. The optimized neural network configuration comprises four input and one output neuron, fine-tuned based on the mean squared error (MSE). The training phase demonstrates a consistent MSE decline, reaching its lowest at epoch 209 for %DEC and epoch 34 for %COD, with corresponding MSEs of $1.799 \times 10^{-5}$ and $ 1.4 \times 10^{-3} $, respectively. The maximum absolute errors for %DEC and %COD were found to be $ 4.0787 $ and $ 2.4486 $, while the mean absolute errors were $ 0.4821 $ and $ 0.7256 $, respectively. In contrast to second-degree polynomial regression, the FFNN model exhibits enhanced predictive accuracy, as indicated by higher $ R^2 $ values of $ 0.99363 $ for %DEC and $ 0.99716 $ for %COD, and reduced error metrics.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3