Author:
Hu Zhenyong, ,Wang Xiaoyuan,Fan Jinhua,
Abstract
<abstract><p>Let $ f(z) $ be analytic in the unit disk with $ f(0) = f'(0)-1 = 0 $. For the following close-to-convex subclasses: $ \Re \{(1-z)f'(z)\} > 0, $ $ \Re \{(1-z^{2})f'(z)\} > 0, $ $ \Re \{(1-z+z^{2})f'(z)\} > 0 $ and $ \Re \{(1-z)^{2}f'(z)\} > 0 $, we investigate the bounds for the first two consecutive derivatives of higher order Schwarzian derivatives of $ f(z) $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference37 articles.
1. D. Aharonov, U. Elias, Sufficient conditions for univalence of analytic functions, J. Anal., 22 (2014), 1–11.
2. M. F. Ali, A. Vasudevarao, On logarithmic coefficients of some close-to-convex functions, Proc. Amer. Math. Soc., 146 (2018), 1131–1142.
3. D. Bshouty, A. Lyzzaik, Univalent functions starlike with respect to a boundary point, Contemp. Math., 382 (2005), 83–87.
4. N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko, Y. J. Sim, On the third logarithmic coefficient in some subclasses of close-to-convex functions, RACSAM, 114 (2020), 52.
5. N. E. Cho, B. Kowalczyk, A. Lecko, Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis, B. Aust. Math. Soc., 100 (2019), 86–96.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献