Abstract
<abstract><p>This article applied the properties of character sums, quadratic character, and classical Gauss sums to study the calculations of the hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. It also provided exact formulas for calculating these hybrid power means.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference16 articles.
1. A. Weil, On some exponential sums, Proc. Nat. Acad. Sci., 34 (1948), 204–207. http://dx.doi.org/10.1073/pnas.34.5.204
2. X. Lv, W. Zhang, A new hybrid power mean involving the generalized quadratic gauss sums and sums analogous to kloosterman sums, Lith. Math. J., 57 (2017), 359–366. http://dx.doi.org/10.1007/s10986-017-9366-z
3. G. Djankovic, D. Dokic, N. Lela, I. Vrecica, On some hybrid power moments of products of generalized quadratic Gauss sums and Kloosterman sums, Lith. Math. J., 58 (2018), 1–14. http://dx.doi.org/10.1007/s10986-018-9383-6
4. X. Li, C. Wu, Generalized quadratic Gauss sums and mixed means of generalized Kloosterman sums (Chinese), Mathematics in Practics and Theory, 49 (2019), 236–242.
5. X. Liu, Y. Meng, On the fourth hybrid power mean involving the generalized gauss sums, J. Math., 2023 (2023), 8732814. http://dx.doi.org/10.1155/2023/8732814