Abstract
<abstract><p>We extend two standard theorems on groups to gyrogroups: the direct product theorem and the cancellation theorem for direct products. Firstly, we prove that under a certain condition a gyrogroup $ G $ can be decomposed as the direct product of two subgyrogroups. Secondly, we prove that finite gyrogroups can be cancelled in direct products: if $ A\cong B $, then $ A\times H\cong B\times K $ or $ H\times A\cong K\times B $ implies $ H\cong K $, where $ A, B, H, $ and $ K $ are finite gyrogroups.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference14 articles.
1. T. Abe, O. Hatori, On a characterization of commutativity for $C^{\ast}$-algebras via gyrogroup operations, Period. Math. Hung., 72 (2016), 248–251. https://doi.org/10.1007/s10998-016-0126-3
2. D. Dummit, R. Foote, Abstract algebra, 3Eds., New York: John Wiley & Sons, 2003.
3. T. Foguel, A. Ungar, Involutory decomposition of groups into twisted subgroups and subgroups, J. Group Theory, 3 (2000), 27–46. https://doi.org/10.1515/jgth.2000.003
4. J. Gallian, Contemporary abstract algebra, 9Eds., Massachusetts: Cengage Learning, 2016.
5. R. Hirshon, On cancellation in groups, The American Mathematical Monthly, 76 (1969), 1037–1039. https://doi.org/10.1080/00029890.1969.12000401
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献