Abstract
<abstract><p>In this paper, we show a counterexample to the new iterative scheme introduced by Rezapour et al. in "A new modified iterative scheme for finding common fixed points in Banach spaces: application in variational inequality problems" <sup>[<xref ref-type="bibr" rid="b2">2</xref>]</sup>. We propose a modified iteration to conclude the convergence result. Moreover, some of our results are established under a weaker assumption.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference9 articles.
1. R. Pant, R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38 (2017), 248–266. https://doi.org/10.1080/01630563.2016.1276075
2. S. Rezapour, M. Iqbal, A. Batool, S. Etemad, T. Botmart, A new modified iterative scheme for finding common fixed points in Banach spaces: application in variational inequality problems, AIMS Mathematics, 8 (2023), 5980–5997. https://doi.org/10.3934/math.2023301
3. R. P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511543005
4. P. Debnath, N. Konwar, S. Radenović, Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences, Singapore: Springer Singapore, 2021. https://doi.org/10.1007/978-981-16-4896-0
5. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.1090/S0002-9947-1936-1501880-4