Fuzzy adaptive learning control network (FALCN) for image clustering and content-based image retrieval on noisy dataset

Author:

Neelakandan S.1,Easwaramoorthy Sathishkumar Veerappampalayam2,Chinnasamy A.3,Cho Jaehyuk2

Affiliation:

1. Department of CSE, R.M.K. Engineering College, Chennai, 601206, India

2. Department of Software Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea

3. Department of Data Science and Business Systems, School of Computing, SRMIST Kattankulathur, Chennai, 603023, India

Abstract

<abstract> <p>It has been demonstrated that fuzzy systems are beneficial for classification and regression. However, they have been mainly utilized in controlled settings. An image clustering technique essential for content-based picture retrieval in big image datasets is developed using the contents of color, texture and shape. Currently, it is challenging to label a huge number of photos. The issue of unlabeled data has been addressed. Unsupervised learning is used. K-means is the most often used unsupervised learning algorithm. In comparison to fuzzy c-means clustering, K-means clustering has lower-dimensional space resilience and initialization resistance. The dominating triple HSV space was shown to be a perceptual color space made of three modules, S (saturation), H (hue) and V (value), referring to color qualities that are significantly connected to how human eyes perceive colors. A deep learning technique for segmentation (RBNN) is built on the Gaussian function, fuzzy adaptive learning control network (FALCN), clustering and the radial basis neural network. The segmented image and critical information are fed into a radial basis neural network classifier. The suggested fuzzy adaptive learning control network (FALCN) fuzzy system, also known as the unsupervised fuzzy neural network, is very good at clustering images and can extract image properties. When a conventional fuzzy network system receives a noisy input, the number of output neurons grows needlessly. Finally, random convolutional weights extract features from data without labels. Furthermore, the state-of-the-art uniting the proposed FALCN with the RBNN classifier, the proposed descriptor also achieves comparable performance, such as improved accuracy is 96.547 and reduced mean squared error of 36.028 values for the JAFE, ORL, and UMIT datasets.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3