Incorporating stochastic volatility and long memory into geometric Brownian motion model to forecast performance of Standard and Poor's 500 index

Author:

Alhagyan Mohammed1,Yassen Mansour F.12

Affiliation:

1. Mathematics Department, College of Humanities and Science in Al Aflaj, Prince Sattam Bin Abdulaziz University, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517 Damietta, Egypt

Abstract

<abstract> <p>It is known in the financial world that the index price reveals the performance of economic progress and financial stability. Therefore, the future direction of index prices is a priority of investors. This empirical study investigated the effect of incorporating memory and stochastic volatility into geometric Brownian motion (GBM) by forecasting the future index price of S&amp;P 500. To conduct this investigation, a comparison study was implemented between twelve models; six models without memory (GBM) and six models with memory (GFBM) under two different assumptions of volatility; constant, which were computed by three methods, and stochastic volatility, obeying three deterministic functions. The results showed that the best performance model was for GFBM under a stochastic volatility assumption using the identity deterministic function $ \sigma \left({Y}_{t}\right) = {Y}_{t} $, according to the smallest values of mean square error (MSE) and mean average percentage error (MAPE). This revealed the direct positive effect of incorporating memory and stochastic volatility into GBM to forecast index prices, and thus can be applied in a real financial environment. Furthermore, the findings showed invalidity of the models with exponential deterministic function $ \sigma \left({Y}_{t}\right) = {e}^{{Y}_{t}} $ in forecasting index prices according to huge values of MAPE and MSE.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3