Author:
Chen Dan-Ni,Cheng Jing,Shen Xiao,Zhang Pan
Abstract
<abstract><p>In this paper, we prove the existence of the approximate $ (\sigma, \tau) $-Hermitian Yang-Mills structure on the $ (\sigma, \tau) $-semi-stable quiver bundle $ \mathcal{R} = (\mathcal{E}, \phi) $ over compact Gauduchon manifolds. An interesting aspect of this work is that the argument on the weakly $ L^{2}_1 $-subbundles is different from [Álvarez-Cónsul and García-Prada, Comm. Math. Phys., 2003] and [Hu-Huang, J. Geom. Anal., 2020].</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference19 articles.
1. L. Álvarez-Cónsul, O. García-Prada, Hitchin-Kobayashi correspondence, quivers, and vortices, Commun. Math. Phys., 238 (2003), 1–33. https://doi.org/10.1007/s00220-003-0853-1
2. I. Biswas, H. Kasuya, Higgs bundles and flat connections over compact Sasakian manifolds, Commun. Math. Phys., 385 (2021), 267–290. https://doi.org/10.1007/s00220-021-04056-4
3. U. Bruzzo, B. G. Otero, Metrics on semistable and numerically effective Higgs bundles, J. Reine Angew. Math., 2007 (2007), 59–79. https://doi.org/10.1515/CRELLE.2007.084
4. X. Chen, R. Wentworth, A Donaldson-Uhlenbeck-Yau theorem for normal varieties and semistable bundles on degenerating families, Math. Ann., 2023 (2023). https://doi.org/10.1007/s00208-023-02565-2
5. S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, P. Lond. Math. Soc., s3-50 (1985), 1–26. https://doi.org/10.1112/plms/s3-50.1.1
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献