Author:
Dhivya P.,Diwakaran D.,Selvapriya P.
Abstract
<abstract><p>We introduce a large class of mappings called proximal Górnicki mappings in metric spaces, which includes Górnicki mappings, enriched Kannan mappings, enriched Chatterjea mappings, and enriched mappings. We prove the existence of the best proximity points in metric spaces and partial metric spaces. Moreover, we utilize appropriate examples to illustrate our results, and we verify the convergence behavior. As an application of our result, we prove the existence and uniqueness of a solution for the variational inequality problems. The obtained results generalize the existing results in the literature.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference44 articles.
1. S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. http://doi.org/10.4064/fm-3-1-133-181
2. O. Popescu, A new class of contractive mappings, Acta Math. Hungar., 164 (2021), 570–579. https://doi.org/10.1007/s10474-021-01154-6
3. V. Berinde, M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl., 22 (2020), 38. https://doi.org/10.1007/s11784-020-0769-9
4. J. Górnicki, R. K. Bisht, Around averaged mappings, J. Fixed Point Theory Appl., 23 (2021), 48. https://doi.org/10.1007/s11784-021-00884-y
5. A. Marchis, Common fixed point theorems for enriched Jungck contractions in Banch spaces, J. Fixed Point Theory Appl., 23 (2021), 76. https://doi.org/10.1007/s11784-021-00911-y