Affiliation:
1. Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
2. Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon 21983, Republic of Korea
Abstract
<abstract><p>This paper considers an output-based event-triggered control approach for discrete-time systems and proposes three new types of performance measures under unknown disturbances. These measures are motivated by the fact that signals in practical systems are often associated with bounded energy or bounded magnitude, and they should be described in the $ \ell_{2} $ and $ \ell_\infty $ spaces, respectively. More precisely, three performance measures from $ \ell_{q} $ to $ \ell_{p} $, denoted by the $ \ell_{p/q} $ performances with $ (p, q) = (2, 2), \ (\infty, 2) $ and $ (\infty, \infty) $, are considered for event-triggered systems (ETSs) in which the corresponding event-trigger mechanism is defined as a function from the measured output of the plant to the input of the dynamic output-feedback controller with the triggering parameter $ \sigma (>0) $. Such a selection of the pair $ (p, q) $ represents the $ \ell_{p/q} $ performances to be bounded and well-defined, and the three measures are natural extensions of those in the conventional feedback control, such as the $ H_\infty $, generalized $ H_2 $ and $ \ell_1 $ norms. We first derive the corresponding closed-form representation with respect to the relevant ETSs in terms of a piecewise linear difference equation. The asymptotic stability condition for the ETSs is then derived through the linear matrix inequality approach by developing an adequate piecewise quadratic Lyapunov function. This stability criterion is further extended to compute the $ \ell_{p/q} $ performances. Finally, a numerical example is given to verify the effectiveness of the overall arguments in both the theoretical and practical aspects, especially for the trade-off relation between the communication costs and $ \ell_{p/q} $ performances.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference24 articles.
1. W. P. M. H. Heemels, K. H. Johansson, P. Tabuada, An introduction to event-triggered and self-triggered control, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, 3270–3285. https://doi.org/10.1109/CDC.2012.6425820
2. Y. Wang, L. Xiao, Y. Guo, Finite-time stability of singular switched systems with a time-varying delay based on an evnet-triggered mechanism, AIMS Math., 8 (2023), 1901–1924. https://doi.org/10.3934/math.2023098
3. L. Cao, Y. Pan, H. Liang, T. Huang, Observer-based dynamic event-triggered control for multiagent systems with time-varying delay, IEEE Trans. Cybern., 53 (2022), 3376–3387. https://doi.org/10.1109/TCYB.2022.3226873
4. L. Cao, Z. Cheng, Y. Liu, H. Li, Event-based adaptive NN fixed-time cooperative formation for multiagent systems, IEEE Trans. Neural Networks Learn. Syst., 2022. https://doi.org/10.1109/TNNLS.2022.3210269
5. H. Yu, F. Hao, Periodic event-triggered state-feedback control for discrete-time linear systems, J. Franklin Inst., 353 (2016), 1809–1828. https://doi.org/10.1016/j.jfranklin.2016.03.002
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献