Author:
Srivastava Hari M., ,Kashuri Artion,Mohammed Pshtiwan Othman,Alsharif Abdullah M.,Guirao Juan L. G., , , , , , , ,
Abstract
<abstract><p>The main goal of this article is first to introduce a new generalization of the fractional integral operators with a certain modified Mittag-Leffler kernel and then investigate the Chebyshev inequality via this general family of fractional integral operators. We improve our results and we investigate the Chebyshev inequality for more than two functions. We also derive some inequalities of this type for functions whose derivatives are bounded above and bounded below. In addition, we establish an estimate for the Chebyshev functional by using the new fractional integral operators. Finally, we find similar inequalities for some specialized fractional integrals keeping some of the earlier results in view.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference71 articles.
1. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006.
2. D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, Y. Rangel-Oliveros, Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), Article ID 374, 1-25.
3. J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794-806.
4. P. O. Mohammed, New generalized Riemann-Liouville fractional integral inequalities for convex functions, J. Math. Inequal., 15 (2021), 511-519.
5. P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), Article ID 595, 1-17.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献