Author:
Greshnov Alexander,Potapov Vladimir
Abstract
<abstract><p>For some class of 2-step Carnot groups $ D_n $ with 1-dimensional centre we find the exact values of the constants in $ (1, q_2) $-generalized triangle inequality for their $ \text{Box} $-quasimetrics $ \rho_{\text{Box}_{D_n}} $. Using this result we get the best version of the Coincidence Points Theorem of $ \alpha $-covering and $ \beta $-Lipschitz mappings defined on $ (D_n, \rho_{\text{Box}_{D_n}}) $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献