Author:
Ahmad Sohaib, ,Hussain Sardar,Aamir Muhammad,Khan Faridoon,Alshahrani Mohammed N,Alqawba Mohammed, , , ,
Abstract
<abstract><p>This paper addresses the issue of estimating the population mean for non-response using simple random sampling. A new family of estimators is proposed for estimating the population mean with auxiliary information on the sample mean and the rank of the auxiliary variable. Bias and mean square errors of existing and proposed estimators are obtained using the first order of measurement. Theoretical comparisons are made of the performance of the proposed and existing estimators. We show that the proposed family of estimators is more efficient than existing estimators in the literature under the given constraints using these theoretical comparisons.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference32 articles.
1. S. Ahmad, S. Hussain, S. Ahmad, Finite population distribution function estimation using auxiliary information under simple random sampling, Stat. Comput. Interdiscip. Res., 3 (2021), 29–38. https://doi.org/10.52700/scir.v3i1.25
2. S. Ahmad, J. Shabbir, Use of extreme values to estimate finite population mean under pps sampling scheme, J. Reliab. Stat. Stud., 11 (2018), 99–112.
3. S. Al-Marzouki, C. Chesneau, S. Akhtar, J. N. Abdul, S. Ahmad, S. Hussain, et al., Estimation of finite population mean under pps in presence of maximum and minimum values, AIMS Math., 6 (2021), 5397–5409. https://doi.org/10.3934/math.2021318
4. S. Bahl, R. Tuteja, Ratio and product type exponential estimators, J. Inform. Optim. Sci., 12 (1991), 159–164. https://doi.org/10.1080/02522667.1991.10699058
5. W. W. Chanu, B. K. Singh, Improved exponential ratio cum exponential dual to ratio estimator of finite population mean in presence of non-response, J. Stat. Appl. Probab., 4 (2015), 103.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献