Author:
Açıkgöz Necati Can,Elmalı Ceren Sultan
Abstract
<abstract><p>In this paper, we define the $ ij $-almost-set Menger ($ ij $-ASM) property in bitopological spaces. We put up some equivalences of $ ij $-almost-set Menger bitopological spaces and investigate the behaviours of such spaces under some different types of mappings. We later take the preservation of these properties under union, subspaces, products into consideration and give some related examples. We finally introduce the concept of $ ij $-almost $ P_{\gamma} $-set in bitopological spaces.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference64 articles.
1. W. Hurewicz, Über die Verallgemeinerung des Borelschen theorems, Math. Z., 24 (1926), 401–421.
2. W. Hurewicz, Über folgen stetiger funktionen, Fund. Math., 9 (1927), 193–204.
3. K. Menger, Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte Abt. 2a, Mathematik, Astronomie, Physik, Meteorologie und Mechanik (Wiener Akademie, Wien), 133 (1924), 421–444.
4. F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math., 30 (1938), 50–55. https://doi.org/10.4064/fm-30-1-50-55
5. W. Just, A. W. Miller, M. Scheepers, P. J. Szeptycki, The combinatorics of open covers (Ⅱ), Topol. Appl., 73 (1996), 214–266. https://doi.org/10.1016/S0166-8641(96)00075-2