Author:
Li Yiyun,Xie Jingli,Mao Luping
Abstract
<abstract><p>In this paper, we consider a boundary value problem of impulsive fractional differential equations with the nonlinear $ p $-Laplacian operator, where impulses are non-instantaneous. By converting the given problem into an equivalent integral form and applying the Schauder fixed point theorem, we obtain some sufficient conditions for the existence of solutions. An illustrative example is presented to demonstrate the validity of our results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference27 articles.
1. V. S. Erturk, E. Godwe, D. Baleanu, P. Kumar, J. Asad, A. Jajarmi, Novel fractional order Lagrangian to describe motion of beam on nanowire, Acta Phys. Pol. A., 140 (2021), 265–272. https://doi.org/10.12693/APhysPolA.140.265
2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
3. K. S. Miller, B. Ross, An Introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
4. R. P. Agarwal, B. de Andrade, C. Cuevas, Type of periodicity and ergodicity to a class of fractional order differential equations, Adv. Differ. Equations., 2010 (2010), 1–25. https://doi.org/10.1155/2010/179750
5. F. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys., 103 (1995), 7180–7186. https://doi.org/10.1063/1.470346
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献