Author:
Yu Lujuan,Wang Beibei,Yang Jianwei
Abstract
<abstract><p>In this paper, we studied a double-phase eigenvalue problem with large variable exponents. Let $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $ be the first eigenvalues and $ u_{n} $ be the first eigenfunctions, normalized by $ \|u_{n}\|_{\mathcal{H}_{n}} = 1 $. Under some assumptions on the variable exponents $ p_{n}(\cdot) $ and $ q_{n}(\cdot) $, we showed that $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $ converges to $ \Lambda_{\infty} $, $ u_{n} $ converges to $ u_{\infty} $ uniformly in the space $ C^{\alpha}(\Omega)\, (0 < \alpha < 1) $ and $ u_{\infty} $ is a nontrivial viscosity solution to a Dirichlet $ \infty $-Laplacian problem. Even in the case where the variable exponents reduce to the constant exponents, our work is the first one dealing with a double-phase eigenvalue problem with large exponents.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference19 articles.
1. G. Franzina, P. Lindqvist, An eigenvalue problem with variable exponents, Nonlinear Anal., 85 (2013), 1–16. http://doi.org/10.1016/j.na.2013.02.011
2. V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1986), 675–710. http://doi.org/10.1070/IM1987v029n01ABEH000958
3. V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249–269.
4. V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 5 (1997).
5. V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Heidelberg: Springer Berlin, 1994. https://doi.org/10.1007/978-3-642-84659-5