A quantum resistant universal designated verifier signature proof

Author:

Thanalakshmi P.1,Anbazhagan N.2,Joshi Gyanendra Prasad3,Yang Eunmok4

Affiliation:

1. Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore 641004, India

2. Department of Mathematics, Alagappa University, Karaikudi 630003, India

3. Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea

4. Department of Information Security, Cryptology and Mathematics, Kookmin University, Seoul 02707, Korea

Abstract

<abstract><p>In order to ensure that only the designated person can verify the signer's signature on the message, Steinfeld et al. introduced the concept of Universal Designated Verifier Signature (UDVS), which enables a designator who has obtained a signature on a message from the signer to designate the signature to any desired designated verifier. This idea was developed to address the privacy concerns of the signature holder at the time of certificate distribution. They are appropriate for applications that demand the designer's secrecy. The fact that the designated verifier must generate a public key with regard to the signer's public parameter for signature verification is a significant drawback of UDVS methods. In cases where the verifier is unable to begin the key generation procedure, this constraint is inapplicable. Baek et al. developed the idea of "Universal Designated Verifier Signature Proof (UDVSP)", which does not require the verifier's public key for verification, to get around this restriction. All existing UDVSP constructions are based on a discrete logarithm problem, which is vulnerable to quantum computer attacks. As a result, an efficient quantum resistant UDVSP is built on a hard problem in coding theory, as suggested by NIST reports. The scheme's security against forgeability and impersonation attacks is examined using the random oracle model.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3