Abstract
<abstract><p>By a fractional quadratic transformation, an indirect-PH curve can have rational offsets. In this paper, I study properties of planar sextic indirect-PH curves, in terms of their Bézier control polygon legs. With our results, sextic Bézier curves can be efficiently tested whether they are indirect-PH curves. The main strategy to achieve our results is using complex representation of planar parametric curve. Sextic indirect-PH curves can be classified into three classes according to different factorizations of their hodographs. Necessary and sufficient conditions for all classes of sextic indirect-PH curves can be described by non-linear complex systems. By analyzing these non-linear systems, algebraic conditions for a sextic Bézier curve to be an indirect-PH curve are first discussed, then geometric characteristics in terms of legs of its control polygon are revealed.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference39 articles.
1. G. Farin, J. Hoschek, M. S. Kim, Handbook of computer aided geometric design, Elsevier, 2002. https://doi.org/10.1016/B978-0-444-51104-1.X5000-X
2. R. T. Farouki, C. A. Neff, Analytic properties of plane offset curves, Comput. Aided Geom. Design, 7 (1990), 83–99. http://doi.org/10.1016/0167-8396(90)90023-K
3. B. Pham, Offset curves and surfaces: A brief survey, Comput. Aided Design, 24 (1992), 223–229. http://doi.org/10.1016/0010-4485(92)90059-J
4. G. Elber, I. K. Lee, M. S. Kim, Comparing offset curve approximation methods, IEEE Comput. Graph. Appl., 17 (1997), 62–71. https://doi.org/10.1109/38.586019
5. T. Maekawa, An overview of offset curves and surfaces, Comput. Aided Design, 31 (1999), 165–173. http://doi.org/10.1016/S0010-4485(99)00013-5