A novel technique on flexibility and adjustability of generalized fractional Bézier surface patch

Author:

Zain Syed Ahmad Aidil Adha Said Mad,Misro Md Yushalify

Abstract

<abstract><p>Designing complex surfaces is one of the major problems in industries such as the automotive, shipbuilding and aerospace industries. To solve this problem, continuity conditions between surfaces are applied to construct the complex surfaces. The geometric and parametric continuities are the two metrics that usually have been used in connecting surfaces. However, the conventional geometric and parametric continuities have significant limitations. The existing continuity conditions only allow the two surfaces to be joined at the end of the boundary point. Therefore, if the designers want to connect at any arbitrary line of the first surface, the designers must use the subdivision method to splice the surfaces. Nevertheless, this method is tedious and involves a high computational cost, especially when dealing with a higher degree order of surfaces. Thus, this paper presents fractional continuity of degree two (or $ F^2 $) for generalized fractional Bézier surfaces. The fractional parameter embedded in the generalized fractional Bézier basis functions will solve the mentioned limitation by introducing fractional continuity. The generalized fractional Bézier surface also has excellent shape parameters that can alter the shape of the surface without changing the control points. Thus, the shape parameters enable the control of the shape flexibility of the surfaces, while fractional parameters enable the control of the adjustability of the surfaces' size. The $ F^2 $ continuity for generalized fractional Bézier surfaces can become an easier and faster alternative to the subdivision method. Therefore, the fractional continuity for generalized fractional Bézier surfaces will be a good tool to generate complex surfaces due to its flexibility and adjustability of shape and fractional parameters.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference24 articles.

1. K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.

2. G. E. Farin, G. Farin, Curves and surfaces for CAGD: A practical guide, Morgan Kaufmann, USA, 2002.

3. D. M. Yip-Hoi, Teaching surface modeling to CAD/CAM technologists, 2011 ASEE Annual Conference Exposition, Vancouver, BC, 2011.

4. F. Shi, Computer aided geometric design and non-uniform rational B-spline, Higher Education Press, Beijing, 2001.

5. H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-spline techniques, Springer Berlin, Heidelberg, 2002. https://doi.org/10.1007/978-3-662-04919-8

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3