Abstract
<abstract><p>In this paper, we showed some generalized refinements and reverses of arithmetic-geometric-harmonic means (AM-GM-HM) inequalities due to Sababheh [J. Math. Inequal. 12 (2018), 901–920]. Among other results, it was shown that if $ a, b > 0 $, $ 0 < p\leq t < 1 $ and $ m\in\mathbb{N^{+}} $, then</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \frac{(a\nabla_{p}b)^{m}-(a!_{p}b)^{m}}{(a\nabla_{ t}b)^{m}-(a!_{ t}b)^{m}}\leq\frac{p(1-p)}{ t(1- t)} \end{align*} $\end{document} </tex-math></disp-formula></p>
<p>and</p>
<p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{align*} \frac{(a\sharp _{p} b)^{m}-(a!_{p}b)^{m}}{(a\sharp _{ t} b)^{m}-(a!_{ t}b)^{m}}\leq\frac{p(1-p)}{ t(1- t)} \end{align*} $\end{document} </tex-math></disp-formula></p>
<p>for $ b\geq a $, and the inequalities are reversed for $ b\leq a $. As applications, we obtained some inequalities for operators and determinants.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference10 articles.
1. H. Alzer, C. M. da Fonseca, A. Kova$\check{c}$ec, Young-type inequalities and their matrix analogues, Linear Multilinear A., 63 (2015), 622–635. https://doi.org/10.1080/03081087.2014.891588
2. E. F. Beckenbach, R. Bellman, Inequalities, Berlin, Heidelberg: Springer, 1961. https://doi.org/10.1007/978-3-642-64971-4
3. D. Choi, A generalization of Young-type inequalities, Math. Inequal. Appl., 21 (2018), 99–106. https://doi.org/10.7153/MIA-2018-21-08
4. D. Choi, M. Sababheh, Inequalities related to the arithmetic, geometric and harmonic means, J. Math. Inequal., 11 (2017), 1–16. https://doi.org/10.7153/jmi-11-01
5. W. Liao, J. Wu, Matrix inequalities for the difference between arithmetic mean and harmonic mean, Ann. Funct. Anal., 6 (2015), 191–202. https://doi.org/10.15352/afa/06-3-16