Configuration angle effect on the control process of an oscillatory rotor in 8-pole active magnetic bearings

Author:

Kandil Ali12,Hou Lei3,Sharaf Mohamed4,Arafa Ayman A.14

Affiliation:

1. Department of Applied and Computational Mathematics, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt

2. Department of Physics and Engineering Mathematics, Faculty of Electronic Engineering, Menouf, 32952, Menoufia University, Egypt

3. Industrial Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

4. Department of Mathematics, Faculty of Science, Sohag University, 82524, Sohag, Egypt

Abstract

<abstract> <p>In an active magnetic bearings (AMBs) model, every pair of opposite poles is aligned at an angle with the horizontal axis. In some configurations, there is a pair of poles which is in line with the horizontal axis. In other configurations, the same pair of poles might make a nonzero angle with the horizontal axis. This paper focused on the effect of changing such a configuration angle on the control process of an oscillatory rotor in an 8-pole active magnetic bearings model. Adopting the proportional-derivative (PD) control algorithm, the radial or Cartesian control techniques were applied. It was found that the rotor's oscillation amplitudes were not affected by the change in the configuration angle, even if its rotation speed and eccentricity were varied in the radial control scheme. However, the amplitudes were severely affected by the change in the configuration angle except at a specific angle in the Cartesian control scheme. The approximate modulating amplitudes and phases of the rotor's oscillations were extracted by the method of multiple-scales and a stability condition was tested based on the eigenvalues of the corresponding Jacobian matrix.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3