A new generalization of edge-irregular evaluations

Author:

Bača Martin1,Imran Muhammad2,Kimáková Zuzana1,Semaničová-Feňovčíková Andrea13

Affiliation:

1. Department of Applied Mathematics and Informatics, Technical University, Letná 9, Košice, Slovakia

2. Department of Mathematical Sciences, United Arab Emirates University, Al Ain, United Arab Emirates

3. Division of Mathematics, Saveetha School of Engineering, SIMATS, Chennai, India

Abstract

<abstract><p>Consider a simple graph $ G = (V, E) $ of size $ m $ with the vertex set $ V $ and the edge set $ E $. A modular edge-irregular total $ k $-labeling of a graph $ G $ is a labeling scheme for the vertices and edges with the labels $ 1, 2, \dots, k $ that allows the modular weights of any two different edges to be distinct, where the modular weight of an edge is the remainder of the division of the weight (i.e., the sum of the label of the edge itself and the labels of its two end vertices) by $ m $. The maximal integer $ k $, minimized over all modular edge-irregular total $ k $-labelings of the graph $ G $ is called the modular total edge-irregularity strength. In the paper, we generalize the approach to edge-irregular evaluations, introduce the notion of the modular total edge-irregularity strength and obtain its boundary estimation. For certain families of graphs, we investigate the existence of modular edge-irregular total labelings and determine the precise values of the modular total edge-irregularity strength in order to prove the sharpness of the lower bound.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference23 articles.

1. A. Ahmad, O. B. S. Al-Mushayt, M. Bača, On edge irregularity strength of graphs, Appl. Math. Comput., 243 (2014), 607–610. https://doi.org/10.1016/j.amc.2014.06.028

2. A. Ahmad, M. A. Asim, M. Bača, R. Hasni, Computing edge irregularity strength of complete $m$-ary trees using algorithmic approach, U.P.B. Sci. Bull., Ser. A, 80 (2018), 145–152.

3. A. Ahmad, M. Bača, Y. Bashir, M. K. Siddiqui, Total edge irregularity strength of strong product of two paths, Ars Combin., 106 (2012), 449–459.

4. A. Ahmad, M. Bača, M. F. Nadeem, On edge irregularity strength of Toeplitz graphs, U.P.B. Sci. Bull., Ser. A, 78 (2016), 155–162.

5. A. Ahmad, M. Bača, M. K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comput. Syst., 54 (2014), 1–12. https://doi.org/10.1007/s00224-013-9470-3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3