A new generalization of edge-irregular evaluations
-
Published:2023
Issue:10
Volume:8
Page:25249-25261
-
ISSN:2473-6988
-
Container-title:AIMS Mathematics
-
language:
-
Short-container-title:MATH
Author:
Bača Martin1, Imran Muhammad2, Kimáková Zuzana1, Semaničová-Feňovčíková Andrea13
Affiliation:
1. Department of Applied Mathematics and Informatics, Technical University, Letná 9, Košice, Slovakia 2. Department of Mathematical Sciences, United Arab Emirates University, Al Ain, United Arab Emirates 3. Division of Mathematics, Saveetha School of Engineering, SIMATS, Chennai, India
Abstract
<abstract><p>Consider a simple graph $ G = (V, E) $ of size $ m $ with the vertex set $ V $ and the edge set $ E $. A modular edge-irregular total $ k $-labeling of a graph $ G $ is a labeling scheme for the vertices and edges with the labels $ 1, 2, \dots, k $ that allows the modular weights of any two different edges to be distinct, where the modular weight of an edge is the remainder of the division of the weight (i.e., the sum of the label of the edge itself and the labels of its two end vertices) by $ m $. The maximal integer $ k $, minimized over all modular edge-irregular total $ k $-labelings of the graph $ G $ is called the modular total edge-irregularity strength. In the paper, we generalize the approach to edge-irregular evaluations, introduce the notion of the modular total edge-irregularity strength and obtain its boundary estimation. For certain families of graphs, we investigate the existence of modular edge-irregular total labelings and determine the precise values of the modular total edge-irregularity strength in order to prove the sharpness of the lower bound.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Mathematics
Reference23 articles.
1. A. Ahmad, O. B. S. Al-Mushayt, M. Bača, On edge irregularity strength of graphs, Appl. Math. Comput., 243 (2014), 607–610. https://doi.org/10.1016/j.amc.2014.06.028 2. A. Ahmad, M. A. Asim, M. Bača, R. Hasni, Computing edge irregularity strength of complete $m$-ary trees using algorithmic approach, U.P.B. Sci. Bull., Ser. A, 80 (2018), 145–152. 3. A. Ahmad, M. Bača, Y. Bashir, M. K. Siddiqui, Total edge irregularity strength of strong product of two paths, Ars Combin., 106 (2012), 449–459. 4. A. Ahmad, M. Bača, M. F. Nadeem, On edge irregularity strength of Toeplitz graphs, U.P.B. Sci. Bull., Ser. A, 78 (2016), 155–162. 5. A. Ahmad, M. Bača, M. K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comput. Syst., 54 (2014), 1–12. https://doi.org/10.1007/s00224-013-9470-3
|
|