Abstract
<abstract><p>Let $ G $ be a connected standard simple algebraic group of type $ C $ or $ D $ over an algebraically closed field $ \Bbbk $ of positive characteristic $ p > 0 $, and $ \mathfrak{g}: = \mathrm{Lie}(G) $ be the Lie algebra of $ G $. Motivated by the variety of $ \mathbb{E}(r, \mathfrak{g}) $ of $ r $-dimensional elementary subalgebras of a restricted Lie algebra $ \mathfrak{g} $, in this paper we characterize the irreducible components of $ \mathbb{E}(\mathrm{rk}_{p}(\mathfrak{g})-1, \mathfrak{g}) $ where the $ p $-rank $ \mathrm{rk}_{p}(\mathfrak{g}) $ is defined to be the maximal dimension of an elementary subalgebra of $ \mathfrak{g} $.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference11 articles.
1. A. Borel, Linear algebraic groups, Graduate Texts in Mathematics, New York: Springer Science+Business Media, 1991.
2. N. Bourbaki, Lie groups and Lie algebras, Chapters 4–6, Elements of Mathematics, Springer, 2002.
3. J. F. Carlson, E. M. Friedlander, J. Pevtsova, Elementary subalgebras of Lie algebras, J. Algebra, 442 (2015), 155–189. doi: 10.1016/j.jalgebra.2014.10.015
4. R. W. Cater, Simple group of Lie type, John Wiley & Sons, 1989.
5. A. I. Malcev, Commutative subalgebras of semi-simple Lie algebras, Bull. Acad. Sci. URSS, Ser. Math., 9 (1945), 291–300.