Abstract
<abstract><p>In this article, we study the relationship between solutions and their arbitrary-order derivatives of the higher order non-homogeneous linear differential equation</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_{1}(z)f'+A_{0}(z)f = F(z) \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>in the unit disc $ \bigtriangleup $ with analytic or meromorphic coefficients of finite $ [p, q] $-order. We obtain some oscillation theorems for $ f^{(j)}(z)-\varphi(z) $, where $ f $ is a solution and $ \varphi(z) $ is a small function.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference15 articles.
1. W. K. Hayman, Meromorphic functions, Oxford: The Clarendon Press, 1964.
2. J. Heittokangas, On complex differential equations in the unit disc, Ann. Acad. Sci. Fenn. Math. Diss., 122 (2000), 1–54.
3. I. Laine, Nevanlinna theory and complex differential equations, Berlin: Walter de Gruyter, 1993.
4. M. Tsuji, Potential theory in modern function theory, New York: Chelsea, 1975.
5. Z. X. Chen, K. H. Shon, The growth of solutions of differential equations with coefficients of small growth in the disc, J. Math. Anal. Appl., 297 (2004), 285–304.