Abstract
<abstract><p>In this article, we describe two classes of few-weight ternary codes, compute their minimum weight and weight distribution from mathematical objects called simplicial complexes. One class of codes described here has the same parameters with the binary first-order Reed-Muller codes. A class of (optimal) minimal linear codes is also obtained in this correspondence.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference13 articles.
1. M. Adamaszek, Face numbers of down-sets, Amer. Math. Mon., 122 (2015), 367–370.
2. G. T. Bogdanova, I. G. Boukliev, New linear codes of dimension 5 over GF(3), In: Proceedings of the fourth International Workshop on Algebraic and Combinatorial Coding Theory, 1994, 41–43.
3. S. Chang, J. Y. Hyun, Linear codes from simplicial complexes, Des. Codes Cryptogr., 86 (2018), 2167–2181. https://doi.org/10.1007/s10623-017-0442-5
4. C. S. Ding, D. Kohel, S. Ling, Elementary 2-group character codes, IEEE T. Inform. Theory, 46 (2000), 280–284. https://doi.org/10.1109/18.817529
5. J. Y. Hyun, H. K. Kimb, M. Nac, Optimal non-projective linear codes constructed from down-sets, Discrete Appl. Math., 254 (2019), 135–145. https://doi.org/10.1016/j.dam.2018.07.007
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献