Abstract
<abstract><p>The escalating sophistication of malware poses a formidable security challenge, as it evades traditional protective measures. Static analysis, an initial step in malware investigation, involves code scrutiny without actual execution. One static analysis approach employs the conversion of executable files into image representations, harnessing the potency of deep learning models. Convolutional neural networks (CNNs), particularly adept at image classification, have potential for malware detection. However, their inclination towards structured data requires a preprocessing phase to convert software into image-like formats. This paper outlines a methodology for malware detection that involves applying deep learning models to image-converted executable files. Experimental evaluations have been performed by using CNN models, autoencoder-based models, and pre-trained counterparts, all of which have exhibited commendable performance. Consequently, employing deep learning for image-converted executable analysis emerges as a fitting strategy for the static analysis of software. This research is significant because it utilized the largest dataset to date and encompassed a wide range of deep learning models, many of which have not previously been tested together.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference36 articles.
1. K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, H. Liu, A review of android malware detection approaches based on machine learning, IEEE Access, 8 (2020). https://doi.org/10.1109/ACCESS.2020.3006143
2. B. Amos, H. Turner, J. White, Applying machine learning classifiers to dynamic Android malware detection at scale, In: 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), IEEE, Italy, 2013, 1666–1671. https://doi.org/10.1109/IWCMC.2013.6583806
3. M. Egele, T. Scholte, E. Kirda, C. Kruegel, A survey on automated dynamic malware-analysis techniques and tools, ACM Comput. Surv., 44 (2012), 1–42.
4. B. Amro, Malware detection techniques for mobile devices, Int. J. Mobile Netw. Commun. Telemat., 7 (2017). https://doi.org/10.1145/2089125.2089126
5. K. Kavitha, P. Salini, V. Ilamathy, Exploring the malicious Android applications and reducing risk using static analysis, In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), IEEE, India, 2016, 1316–1319. https://doi.org/10.1109/ICEEOT.2016.7754896