Author:
Abd-Elhameed Waleed Mohamed,Alqubori Omar Mazen
Abstract
<abstract><p>This paper presents a new approach for the unified Chebyshev polynomials (UCPs). It is first necessary to introduce the three basic formulas of these polynomials, namely analytic form, moments, and inversion formulas, which will later be utilized to derive further formulas of the UCPs. We will prove the basic formula that shows that these polynomials can be expressed as a combination of three consecutive terms of Chebyshev polynomials (CPs) of the second kind. New derivatives and connection formulas between two different classes of the UCPs are established. Some other expressions of the derivatives of UCPs are given in terms of other orthogonal and non-orthogonal polynomials. The UCPs are also the basis for additional derivative expressions of well-known polynomials. A new linearization formula (LF) of the UCPs that generalizes some well-known formulas is given in a simplified form where no hypergeometric forms are present. Other product formulas of the UCPs with various polynomials are also given. As an application to some of the derived formulas, some definite and weighted definite integrals are computed in closed forms.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)