Author:
Cheng Shuting,Wu Baoyindureng
Abstract
<abstract><p>Let $ G = (V(G), E(G)) $ be a graph. For a positive integer $ k $, we call $ S\subseteq V(G) $ a $ k $-component independent set of $ G $ if each component of $ G[S] $ has order at most $ k $. Moreover, $ S $ is maximal if there does not exist a $ k $-component independent set $ S' $ of $ G $ such that $ S\subseteq S' $ and $ |S| < |S'| $. A maximal $ k $-component independent set of a graph $ G $ is denoted briefly by Mk-CIS. We use $ t_k(G) $ to denote the number of Mk-CISs of a graph $ G $. In this paper, we show that for a forest $ G $ of order $ n $,</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ t_2(G)\leq \left\{ \begin{array}{ll} 3^{\frac{n} 3 },& \text{if}\quad { n\equiv 0\ (mod\ 3) \; \text{and} \; n\geq3 },\\ 4 \cdot 3^{\frac{n-4} 3 },& \text{if}\quad { n \equiv 1\ (mod\ 3) \; \text{and} \; n\geq 4 },\\ 5,& \text{if}\quad { n = 5 },\\ 4^{2} \cdot 3^{\frac{n-8} 3 },& \text{if}\quad { n\equiv 2\ (mod\ 3) \; \text{and} \; n\geq 8 }, \end{array} \right. $\end{document} </tex-math></disp-formula></p>
<p>with equality if and only if $ G\cong F_n $, where</p>
<p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ F_n \cong \left\{ \begin{array}{ll} \frac n 3 P_{3},& \text{if}\quad { n\equiv 0\ ( mod\ 3) \; \text{and} \; n\geq 3 },\\ \frac {n-4} 3 P_{3}\cup K_{1,3} ,& \text{if}\quad { n \equiv 1\ ( mod\ 3) \; \text{and} \; n\geq 4 },\\ K_{1,4} ,& \text{if}\quad { n = 5 },\\ \frac {n-8} 3 P_{3}\cup 2K_{1,3},& \text{if}\quad { n\equiv 2\ ( mod\ 3) \; \text{and} \; n\geq 8 }. \end{array} \right. $\end{document} </tex-math></disp-formula></p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference15 articles.
1. V. E. Alekseev, R. Boliac, D. V. Korobitsyn, V. V. Lozin, NP-hard graph problems and boundary classes of graphs, Theor. Comput. Sci., 389 (2007), 219–236. https://doi.org/10.1016/j.tcs.2007.09.013
2. R. Boliac, K. Cameron, V. V. Lozin, On computing the dissociation number and the induced matching number of bipartite graphs, Ars Combin., 72 (2004), 241–253.
3. S. Cheng, B. Wu, On the $k$-component independence number of a tree, Discrete Dyn. Nat. Soc., 2021, 5540604.
4. M. Hujter, Z. Tuza, The number of maximal independent sets in triangle-free graphs, SIAM J. Discrete Math., 6 (1993), 284–288. https://doi.org/10.1137/0406022
5. M. J. Jou, G. J. Chang, Maximal independent sets in graphs with at most one cycle, Discrete Appl. Math., 79 (1997), 67–73. https://doi.org/10.1016/S0166-218X(97)00033-4
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献