Efficient spectral collocation method for nonlinear systems of fractional pantograph delay differential equations

Author:

Zaky M. A.1,Babatin M.1,Hammad M.2,Akgül A.34,Hendy A. S.5

Affiliation:

1. Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box-65892, Riyadh 11566, Saudi Arabia

2. Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

3. Art and Science Faculty, Department of Mathematics, Siirt University, 56100 Siirt, Turkey

4. Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

5. Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg 620002, Russia

Abstract

<abstract><p>Caputo-Hadamard-type fractional calculus involves the logarithmic function of an arbitrary exponent as its convolutional kernel, which causes challenges in numerical approximations. In this paper, we construct and analyze a spectral collocation approach using mapped Jacobi functions as basis functions and construct an efficient algorithm to solve systems of fractional pantograph delay differential equations involving Caputo-Hadamard fractional derivatives. What we study is the error estimates of the derived method. In addition, we tabulate numerical results to support our theoretical analysis.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference26 articles.

1. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equation, Amsterdam: Elsevier, 2006.

2. F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, London: Imperial College Press, 2010.

3. C. J. Li, H. X. Zhang, X. H. Yang, A new nonlinear compact difference scheme for a fourth-order nonlinear Burgers type equation with a weakly singular kernel, J. Appl. Math. Comput., 2024, 1–33. https://doi.org/10.1007/s12190-024-02039-x

4. L. J. Qiao, W. L. Qiu, M. A. Zaky, A. S. Hendy, Theta-type convolution quadrature OSC method for nonlocal evolution equations arising in heat conduction with memory, Fract. Calc. Appl. Anal., 2024, 1–26. https://doi.org/10.1007/s13540-024-00265-5

5. X. Y. Peng, W. L. Qiu, A. S. Hendy, M. A. Zaky, Temporal second-order fast finite difference/compact difference schemes for time-fractional generalized burgers' equations, J. Sci. Comput., 99 (2024), 52. https://doi.org/10.1007/s10915-024-02514-4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3