Author:
Ning Yan, ,Lu Daowei,Mao Anmin,
Abstract
<abstract><p>In this paper we study nonlinear periodic systems driven by the vectorial $ p $-Laplacian with a nonsmooth locally Lipschitz potential function. Using variational methods based on nonsmooth critical point theory, some existence of periodic and subharmonic results are obtained, which improve and extend related works.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference28 articles.
1. F. H. Clarke, Optimization and nonsmooth analysis, Classics in Applied Mathematics, Philadephia: Society for Industrial and Applied Mathematics, 1990.
2. J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, New York: Springer-Verlag, 1989.
3. G. Barletta, R. Livrea, N. S. Papageorgiou, A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian, Commun. Pure Appl. Anal., 13 (2014), 1075–1086.
4. N. Aizmahin, T. Q. An, The existence of periodic solutions of non-autonomous second-order Hamilton systems, Nonliear Anal., 74 (2011), 4862–4867.
5. T. Q. An, Multiple periodic solutions of Hamiltonian systems with prescribed energy, J. Differ. Equations, 236 (2007), 116–132.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献