Author:
Derbissaly Bauyrzhan,Sadybekov Makhmud
Abstract
<abstract><p>In this paper, we consider an inverse source problem with nonlocal boundary conditions for the heat equation involving multi-term time-fractional derivatives. We determine a source term independent of the space variable, and the temperature distribution from the energy measurement. We reduce the solution of the inverse problem to finding solutions to two problems. The well-posedness of each problem is shown using the generalized Fourier method.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference31 articles.
1. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
2. M. I. Ismailov, M. Cicek, Inverse source problem for a time-fractional diffusion equation with nonlocal boundary conditions, Appl. Math. Model., 40 (2016), 4891–4899. https://doi.org/10.1016/j.apm.2015.12.020
3. N. Laskin, Time fractional quantum mechanics, Chaos Soliton. Fract., 102 (2017), 16–28. https://doi.org/10.1016/j.chaos.2017.04.010
4. A. Sohail, O. A. Beg, Z. W. Li, S. Celik, Physics of fractional imaging in biomedicine, Prog. Biophys. Mol. Bio., 140 (2018), 13–20. https://doi.org/10.1016/j.pbiomolbio.2018.03.002
5. C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-order systems and control: fundamentals and applications, London: Springer Science & Business Media, 2010. http://doi.org/10.1007/978-1-84996-335-0
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献