On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives

Author:

Dida Ridha1,Boulares Hamid2,Abdalla Bahaaeldin3,Alqudah Manar A.4,Abdeljawad Thabet356

Affiliation:

1. Depatement of Mathematics, Faculty of Sciences, University Badji Mokhtar Annaba, P.O. Box 12, Annaba, 23000, Algeria

2. Laboratory of Analysis and Control of Differential Equations "ACED'', University of 8 May 1945 Guelma, P.O. Box 401, 24000 Guelma, Algeria

3. Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia

4. Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

5. Department of Medical Research, China Medical University, Taichung 40402, Taiwan

6. Department of Mathematics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea

Abstract

<abstract><p>Our main interest in this manuscript is to explore the main positive solutions (PS) and the first implications of their existence and uniqueness for a type of fractional pantograph differential equation using Caputo fractional derivatives with a kernel depending on a strictly increasing function $ \Psi $ (shortly $ \Psi $-Caputo). Such function-dependent kernel fractional operators unify and generalize several types of fractional operators such as Riemann-Liouvile, Caputo and Hadamard etc. Hence, our investigated qualitative concepts in this work generalise and unify several existing results in literature. Using Schauder's fixed point theorem (SFPT), we prove the existence of PS to this equation with the addition of the upper and lower solution method (ULS). Furthermore using the Banach fixed point theorem (BFPT), we are able to prove the existence of a unique PS. Finally, we conclude our work and give a numerical example to explain our theoretical results.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3