Author:
Cho N. E., ,Murugusundaramoorthy G.,Karthikeyan K. R.,Sivasubramanian S., , ,
Abstract
<abstract><p>The purpose of this present paper is to investigate some mapping properties of functions which map the unit disc onto a overlapped leaf-like curve, having real part greater than zero. Also we define a class of $ \lambda $-pseudo starlike functions related to a leaf-like curve. Integral representation, inequalities for the initial Taylor-Maclaurin coefficients and Fekete-Szegö problem for subclasses of analytic functions related to various conic regions are obtained as our main results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference24 articles.
1. Z. Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952.
2. A. W. Goodman, Univalent functions Vol. II, Mariner Publishing Co., Inc., Tampa, FL, 1983.
3. M. S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl., 81 (1981), 327–345. https://doi.org/10.1016/0022-247X(81)90067-6
4. M. H. Annaby, Z. S. Mansour, $q$-fractional calculus and equations, Lecture Notes in Mathematics, Springer, Heidelberg, 2012.
5. A. Aral, V. Gupta, R. P. Agarwal, Applications of $q$-calculus in operator theory, Springer, New York, 2013.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献