Efficient control chart-based monitoring of scale parameter for a process with heavy-tailed non-normal distribution

Author:

Maqsood Mediha1,Sanaullah Aamir1,Mahmood Yasar2,Al-Rezami Afrah Yahya3,Abdalla Manal Z. M.4

Affiliation:

1. Department of Statistics, COMSATS University Islamabad, Lahore Campus, Pakistan

2. Department of Statistics, Government College University, Lahore, Pakistan

3. Mathematics Department, College of Humanities and Science, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia

4. Department of Mathematics, College of Sciences and Arts (Muhyil), King Khalid University, Muhyil 61421, Saudi Arabia

Abstract

<abstract> <p>Statistical process control is a procedure of quality control that is widely used in industrial processes to enable monitoring by using statistical techniques. All production processes are faced with natural and unnatural variations. To maintain the stability of the production process and reduce variation, different tools are used. Control charts are significant tools to monitor a production process. In this article, we design an extended exponentially weighted moving average (EEWMA) chart under the assumption of inverse Maxwell (IM) distribution, an IM EEWMA (IMEEWMA) control chart. We have estimated the performance of the proposed chart in terms of various run-length (RL) properties, including the average RL, standard deviation of the RL and median RL. We have also carried out a comparative analysis of the proposed chart with the existing Shewhart-type chart for IM distribution (VIM chart) and IM exponential weighted moving average (IMEWMA) chart. We observed that the proposed IMEEWMA chart performed better than the VIM chart and IMEWMA chart in terms of the ability to detect small and moderate shifts. To demonstrate its practical application, we have applied the IMEEWMA chart, along with existing control charts, to monitor the lifetime of car brake pad data. This real-world example illustrates the superiority of the IMEEWMA chart over its counterparts in industrial scenarios.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3