Abstract
<abstract><p>This study investigates the existence of triple weak solutions for a system of nonlinear elliptic equations with a fourth-order operator. The problem arises in the mathematical modeling of complex physical phenomena.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference20 articles.
1. K. R. Rajagopal, M. Ružička, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn., 13 (2001), 59–78.
2. M. Råžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, Vol. 1748, Springer, Berlin, 2000. https://doi.org/10.1007/BFb0104029
3. V. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, C. R. Acad. Sci. Paris Sér. I, 316 (1993), 435–439.
4. Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/050624522
5. G. Bonanno, P. Candito, G. D'Aguì, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915–939. https://doi.org/10.1515/ans-2014-0406