Abstract
<abstract><p>In this paper, we consider the H-Toeplitz and Toeplitz operators acting on the Bergman space. First, we describe the characterizations of commutativity of two H-Toeplitz operators with certain harmonic symbols. For the general case, it seems very hard. As an extension to the study of Toeplitz operators on the Bergman space, we present the necessary and sufficient conditions of the commutativity of the H-Toeplitz operator and the Toeplitz operator with non-harmonic symbols.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference11 articles.
1. K. Zhu, Operator theory in function spaces, 2 Eds., American Mathematical Society, 2007.
2. A. E. Frazho, W. Bhosri, An operator perspective on signals and systems, Birkhäuser Basel, 2010. https://doi.org/10.1007/978-3-0346-0292-1
3. L. Brown, P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math., 213 (1964), 89–102. https://doi.org/10.1515/crll.1964.213.89
4. S. Axler, Z. Čučković, Commuting Toeplitz operators with harmonic symbols, Integr. Equ. Oper. Theory, 14 (1991), 1–12. https://doi.org/10.1007/BF01194925
5. I. Louhichi, L. Zakariasy, On Toeplitz operators with quasihomogeneous symbols, Arch. Math., 85 (2005), 248–257. https://doi.org/10.1007/s00013-005-1198-0
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献