Intelligent synthesis of hyperspectral images from arbitrary web cameras in latent sparse space reconstruction

Author:

Chen Yenming J.1,Tsai Jinn-Tsong23,Hwang Kao-Shing24,Chen Chin-Lan5,Ho Wen-Hsien267

Affiliation:

1. Department of Information Management, National Kaohsiung University of Science and Technology, Taiwan

2. Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Taiwan

3. Department of Computer Science and Artificial Intelligence, National Pingtung University, Taiwan

4. Department of Electrical Engineering, National Sun Yat-Sen University, Taiwan

5. Department of Family Medicine, Yuan's General Hospital, Taiwan

6. Department of Medical Research, Kaohsiung Medical University Hospital, Taiwan

7. College of Professional Studies, National Pingtung University of Science and Technology, Taiwan

Abstract

<abstract><p>Synthesizing hyperspectral images (HSI) from an ordinary camera has been accomplished recently. However, such computation models require detailed properties of the target camera, which can only be measured in a professional lab. This prerequisite prevents the synthesizing model from being installed on arbitrary cameras for end-users. This study offers a calibration-free method for transforming any camera into an HSI camera. Our solution requires no controllable light sources and spectrometers. Any consumer installing the program should produce high-quality HSI without the assistance of optical laboratories. Our approach facilitates a cycle-generative adversarial network (cycle-GAN) and sparse assimilation method to render the illumination-dependent spectral response function (SRF) of the underlying camera at the first part of the setup stage. The current illuminating function (CIF) must be identified for each image and decoupled from the underlying model. The HSI model is then integrated with the static SRF and dynamic CIF in the second part of the stage. The estimated SRFs and CIFs have been double-checked with the results by the standard laboratory method. The reconstructed HSIs have errors under 3% in the root mean square.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3