Affiliation:
1. School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
2. School of Mathematics, Xuzhou Vocational Technology Academy of Finance and Economics, Xuzhou 221116, China
Abstract
<abstract><p>In this paper, we are concerned with the existence of nontrivial positive solutions for the following generalized quasilinear elliptic equations with critical growth</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} -{\rm{div}}(g^{p}(u)|\nabla u|^{p-2}\nabla u)+ g^{p-1}(u)g'(u)|\nabla u|^{p}+ V(x)|u|^{p-2}u = h(x, u), \; \; x\in \mathbb{R}^{N}, \end{equation*} $\end{document} </tex-math></disp-formula></p>
<p>where $ N\geq3 $, $ 1 < p < N $. Under some suitable conditions, we prove that the above equation has a nontrivial positive solution by variational methods. To some extent, our results improve and supplement some existing relevant results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference38 articles.
1. J. F. Aires, M. A. Souto, Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials, J. Math. Anal. Appl., 416 (2014), 924–946. https://doi.org/10.1016/j.jmaa.2014.03.018
2. F. G. Bass, N. N. Nasanov, Nonlinear electromagnetic-spin waves, Phys. Rep., 189 (1990), 165–223. https://doi.org/10.1016/0370-1573(90)90093-H
3. A. V. Borovskii, A. L. Galkin, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1993), 562–573. https://doi.org/1063-77611931100562-12$10.00
4. X. Chen, R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082–2085. https://doi.org/10.1103/PhysRevLett.70.2082
5. M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献