On Hadamard inequalities for refined convex functions via strictly monotone functions

Author:

Zahra Moquddsa1,Abuzaid Dina2,Farid Ghulam3,Nonlaopon Kamsing4

Affiliation:

1. Department of Mathematics, University of Wah, Wah Cantt, Pakistan

2. Department of Mathematics, King Abdul Aziz University, Saudi Arabia

3. Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan

4. Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Abstract

<abstract><p>In this paper, we define refined $ (\alpha, h-m) $-convex function with respect to a strictly monotone function. This function provides refinements of various well-known classes of functions for specific strictly monotone functions. By applying definition of this new function we prove the Hadamard inequalities for Riemann-Liouville fractional integrals. These inequalities give the refinements of fractional Hadamard inequalities for convex, $ (\alpha, m) $-convex, $ (h-m) $-convex, $ (s, m) $-convex, $ h $-convex and many other related well-known classes of functions implicitly. Also, Hadamard type inequalities for $ k $-fractional integrals are given.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference25 articles.

1. G. A. Anastassiou, Generalized fractional Hermite-Hadamard inequalities involving $m$-convexity and $(s, m)$-convexity, Facta Univ. Ser. Math. Inform., 28 (2013), 107–126.

2. M. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard type inequalities for $m$-convex and $(\alpha, m)$-convex functions, J. Inequal. Pure Appl. Math., 9 (2008), 1–25.

3. S. S. Dragomir, J. Pečariç, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.

4. G. Farid, A. U. Rehman, Q. U. Ain, $k$-fractional integral inequalities of Hadamard type for $(h-m)$-convex functions, Comput. Methods Differ. Equ., 8 (2020), 119–140. https://doi.org/10.22034/CMDE.2019.9462

5. E. Set, B. Çelik, Fractional Hermite-Hadamard type inequalities for quasi-convex functions, Ordu Univ. J. Sci. Tech., 6 (2016), 137–149.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3