Affiliation:
1. Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
2. Department of Mathematical Sciences, Huzhou University, Zhejiang 313000, China
Abstract
<abstract><p>In this paper, a stochastic linear-quadratic (LQ, for short) optimal control problem with jumps in an infinite horizon is studied, where the state system is a controlled linear stochastic differential equation containing affine term driven by a one-dimensional Brownian motion and a Poisson stochastic martingale measure, and the cost functional with respect to the state process and control process is quadratic and contains cross terms. Firstly, in order to ensure the well-posedness of our stochastic optimal control of infinite horizon with jumps, the $ L^2 $-stabilizability of our control system with jump is introduced. Secondly, it is proved that the $ L^2 $-stabilizability of our control system with jump is equivalent to the non-emptiness of the admissible control set for all initial state and is also equivalent to the existence of a positive solution to some integral algebraic Riccati equation (ARE, for short). Thirdly, the equivalence of the open-loop and closed-loop solvability of our infinite horizon optimal control problem with jumps is systematically studied. The corresponding equivalence is established by the existence of a $ stabilizing\ solution $ of the associated generalized algebraic Riccati equation, which is different from the finite horizon case. Moreover, any open-loop optimal control for the initial state $ x $ admiting a closed-loop representation is obatined.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference31 articles.
1. R. Bellman, I. Glicksberg, O. Gross, Some aspects of the mathematical theory of control processes, Technical Report R-313, The Rand Corporation, 1958.
2. R. Boel, P. Varaiya, Optimal control of jump processes, SIAM J. Control Optim., 15 (1977), 92–119. http://dx.doi.org/10.1137/0315008
3. G. Guatteri, G. Tessitore, On the backward stochastic Riccati equation in infinite dimensions, SIAM J. Control Optim., 44 (2005), 159–194. http://dx.doi.org/10.1137/S0363012903425507
4. G. Guatteri, G. Tessitore, Backward stochastic Riccati equations and infinite horizon L-Q optimal control problems with stochastic coefficients, Appl. Math. Optim., 57 (2008), 207–235. http://dx.doi.org/10.1007/s00245-007-9020-y
5. G. Guatteri, F. Masiero, Infinite horizon and ergodic optimal quadratic control problems for an affine equation with stochastic coefficients, SIAM J. Control Optim., 48 (2009), 1600–1631. http://dx.doi.org/10.1137/070696234