On the conjecture of Je$ \acute{\textbf{s}} $manowicz

Author:

Fan Nan,Luo Jiagui

Abstract

<abstract><p>Let $ k, l, m_1 $ and $ m_2 $ be positive integers and let both $ p $ and $ q $ be odd primes such that $ p^k = 2^{m_1}-a^{m_2} $ and $ q^l = 2^{m_1}+a^{m_2} $ where $ a $ is a positive integer with $ a\equiv {\pm 3}\pmod 8 $. In this paper, using only the elementary methods of factorization, congruence methods and the quadratic reciprocity law, we show that Je$ \acute{s} $manowicz' a conjecture holds for the following set of primitive Pythagorean numbers:</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \frac{q^{2l}-p^{2k}}{2}, p^kq^l, \frac{q^{2l}+p^{2k}}{2}. $\end{document} </tex-math></disp-formula></p> <p>We also prove that Je$ \acute{s} $manowicz' conjecture holds for non-primitive Pythagorean numbers:</p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ n\frac{q^{2l}-p^{2k}}{2}, np^kq^l, n\frac{q^{2l}+p^{2k}}{2}, $\end{document} </tex-math></disp-formula></p> <p>for any positive integer $ n $ if for $ a = a_1a_2 $ with $ a_1\equiv 1 \pmod 8 $ not a square and $ \gcd(a_1, a_2) = 1 $, then there exists a prime divisor $ P $ of $ a_2 $ such that $ \left(\frac{a_1}{P}\right) = -1 $ and $ 2|m_1, a\equiv 5 \pmod 8 $ or $ 2\not|m_2, a\equiv 3\pmod 8 $.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference25 articles.

1. Sierpin$\acute{s}$ki, On the equation $3^x +4^y = 5^z$, Wiadom. Math., 1 (1955/1956), 194–195.

2. L. Je$\acute{s}$manowicz, Several remarks on Pythagorean numbers, Wiadom. Mat., 1 (1955/1956), 196–202.

3. C. Ke, On Pythagorean numbers, J. Sichuan Univ. Nat. Sci., 1 (1958), 73–80.

4. T. J$\acute{o}$zefiak, On a hypothesis of Je$\acute{s}$manowicz L. concerning Pythagorean numbers, Prace. Math., 5 (1961), 119–123.

5. V. A. Dem'janenko, On Ye$\acute{s}$manowicz' problem for Pythagorean numbers, Izv. Vyssh. Uchebn. Zaved. Mat., 5 (1965), 52–56.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3